The Impact of School Transitions in Early Adolescence on the Self-System and Perceived Social Context of Poor Urban Youth

Edward Seidman
New York University

LaRue Allen
Wayne State University

J. Lawrence Aber
Barnard College of Columbia University

Christina Mitchell
Health Sciences Center, University of Colorado

Joanna Feinman
New York University

SEIDMAN, EDWARD; ALLEN, LARUE; ABER, J. LAWRENCE; MITCHELL, CHRISTINA; and FEINMAN, JOANNA. The Impact of School Transitions in Early Adolescence on the Self-System and Perceived Social Context of Poor Urban Youth. CHILD DEVELOPMENT, 1994, 65, 507-522. This study examined the effects of the normative school transition (n = 580) during early adolescence on the self-system and perceived school and peer social contexts of poor, black (n = 161), white (n = 146), and Latino (n = 273) youth in the public school systems of 3 eastern urban cities. The results revealed negative effects of the school transition on the affective and behavioral domains of the self-system. These declines in self-esteem, class preparation, and grade-point average (GPA) were common across race/ethnicity and gender. Concurrently, the school transition was perceived to be associated with changes in the school and peer contexts. Daily hassles with the school increased, while social support and extracurricular involvement decreased over the transition. Daily hassles with peers decreased, and peer values were perceived as more antisocial. These changes in the school and peer microsystems were also common across race/ethnicity and gender. In addition, transition-associated school and peer changes and, in particular, changes in daily hassles with the school were associated with changes in the academic dimensions of the self-system, that is, academic efficacy expectations, class preparation, and GPA. The results are discussed within a developmental mismatch framework.

During the last 15 years, the impact of a normative school transition on the self-system of early adolescents has become a focal point of scholarship (see Eccles & Midgley, 1989, for a review). This transition occurs during a time of rapid biological and interpersonal change (Brooks-Gunn & Petersen, 1983; Hamburg, 1974). It is likely to be both challenging and disruptive to the self-system and to social relationships, placing youth who do not successfully negotiate this transition at increased risk for long-term negative developmental outcomes. This may be especially true for poor urban youth who are experiencing a greater number of environmental stressors. However, most school

This research was supported in part by grants from the National Institute of Mental Health (MH43084) and the Carnegie Corporation (B4850) awarded to Edward Seidman, J. Lawrence Aber, LaRue Allen, and Christina Mitchell. We would like to express our appreciation to the children and schools whose cooperation made this study possible, as well as to Tracey A. Revenson, and several anonymous reviewers for their incisive comments on earlier drafts of this manuscript. Requests for reprints should be sent to: Edward Seidman, Adolescent Pathways Project, Center for Community Research and Action, Psychology Department, Room 277, New York University, 6 Washington Place, New York, NY 10003.

[Child Development, 1994, 65, 507-522. © 1994 by the Society for Research in Child Development, Inc. All rights reserved. 0009-3920/94/6502-0006$01.00]
transition studies have limited their examination to white, middle-class, and, often, suburban youth. It is important to understand the effects of a normative school transition on the self-system and perceived social contexts of poor urban adolescents from diverse racial and ethnic backgrounds.

IMPACT OF THE EARLY ADOLESCENT SCHOOL TRANSITION ON THE SELF-SYSTEM

The self-system is a vital person-centered mediator of long-term developmental outcomes; it consists of affective, cognitive or motivational, and behavioral domains. Self-esteem (alternatively referred to as self-image or self-worth) has been the central focus of research on school transitions because it is key to understanding the emotional life of the self (e.g., Harter, 1990).

School transition research began in earnest with the pioneering efforts of Simmons, Blyth, and their colleagues in the public schools of Milwaukee in the mid- to late 1970s (Blyth, Simmons, & Bush, 1978; Simmons & Blyth, 1987; Simmons, Blyth, VanCleave, & Bush, 1979). To disentangle the confounding effects of age and junior high school entrance, they contrasted white students heterogeneous in socioeconomic status moving to a junior high school in seventh grade with students remaining in a K–8 structure. To disentangle the confounding effects of age and junior high school entrance, they contrasted white students heterogeneous in socioeconomic status moving to a junior high school in seventh grade with students remaining in a K–8 structure. The results revealed negative effects on females' self-esteem, particularly when the school transition occurred concurrently with the early onset of puberty or in close temporal proximity with other negative life events, for example, early dating, geographic mobility, and death, divorce, or remarriage (Simmons, Burgeson, Carlton-Ford, & Blyth, 1987). A recent comparative analysis of African American and white youth in the Milwaukee study demonstrated a parallel decline in self-esteem for both ethnic groups (Simmons, Black, & Zhou, 1991).

Several other longitudinal studies of the transition to middle or junior high school, primarily in suburban middle-class, predominantly white communities or small cities, failed to replicate the decrement in self-esteem (Fenzel & Blyth, 1986; Hirsch & Rapkin, 1987) or offered limited replication (Nottlemann, 1987). After reviewing published articles and convention proceedings, Eccles and Midgley (1989) concluded that the effects of a school transition during early adolescence on self-esteem are quite mixed. This pattern of inconsistent findings led Simmons and her colleagues to suggest that the size of the transition school and its location (urban or suburban) may be critical explanatory variables (Simmons & Blyth, 1987; Simmons, Carlton-Ford, & Blyth, 1987).

Dimensions of the cognitive or motivational domain of the self-system have also received considerable attention within the school transition literature. For example, attitudes toward school, achievement motivation, and intrinsic versus extrinsic motivation have been found to change negatively, more than they do simply as a function of age or grade; this was especially true for attitudes toward school in large urban settings (Eccles & Midgley, 1989).

Within the behavioral domain of the self-system, academic performance has been examined most often. Grade-point average (GPA) consistently has been shown to manifest large declines after a school transition. In the Milwaukee study, GPA and math achievement scores were adversely affected for both boys and girls who made a transition at seventh grade (Simmons & Blyth, 1987). In their recent comparative analysis of white and African American youth, it was reported that "while everyone’s grades decrease in grade 7, African-American children’s grades plummet" (Simmons et al., 1991, p. 491). Similar findings have emerged in suburban schools (e.g., Petersen & Crockett, 1985).

THE SOCIAL CONTEXT OF THE EARLY ADOLESCENT SCHOOL TRANSITION

The transition to a middle or junior high school typically requires accommodation to an increasingly large, impersonal, and bureaucratic educational milieu (Weber, 1947). Youth need to adjust to dramatic increases in disciplinary specialization, rules and regulations, and the number of teachers and other school personnel with whom they have only limited and circumscribed contact. Similarly, they are confronted with a new set of school peers and interpersonal “tests.” Such disruptions in daily social regularities (Seidman, 1988, 1991b) require a restructuring of social roles (Pearlin, 1983).

Data on the changes associated with a school transition on the school and peer microsystems (Bronfenbrenner, 1979), however, are slim and inconclusive. Simmons and Blyth (1987), among others, demonstrated that youth making the transition to junior high school decrease their participation in extracurricular activities and experience greater anonymity in the first year of junior high school. Midgley and Feldlaufer...
Seidman et al. (1987) found that junior high school students reported fewer opportunities for decision making and lower levels of cognitive involvement than in elementary school; at the same time, teachers exert greater control over student behavior in junior high schools. However, in a study of the transition to a suburban, predominantly white, middle school with a team teaching structure, students reported less perceived strain, mostly from parent control and teacher rejection and, to a lesser extent, from peer rejection and school demands (Fenzel, 1989).

THE DEVELOPMENTAL MISMATCH HYPOTHESIS IN LARGE URBAN SCHOOLS

Working within the Lewinian person-environment fit tradition, Eccles and Midgley (1989, 1990) have proposed a developmental mismatch hypothesis: The mismatch between the motivational and developmental needs (biological, cognitive, and interpersonal) of early adolescents making the transition and their first encounter with the structure and demands of the new social environment (a large, anonymous, and bureaucratic organization) is responsible for decrements in the self-system and disruptions in role relationships. The size and bureaucratic nature of most large urban public schools, in combination with the stresses accompanying the poverty experienced by a large portion of their student population, would lead us to expect an even greater and more extensive developmental mismatch (Aneshensel & Gore, 1991) than in middle-class and/or suburban school districts. This may help to explain many of the inconsistencies in the literature (Simmons, Carlton-Ford, & Blyth, 1987).

The current study examines the developmental mismatch hypothesis within urban schools with high concentrations of poor racially and ethnically diverse youth. The objective of our longitudinal investigation was to understand whether and how the transition might place youth at increased risk for maladaptation, with the longer-term goal of using this information to develop preventive interventions (Seidman, 1991a).

Four major questions are addressed. The first has been addressed before, but with inconsistent findings: What is the impact of the early adolescent school transition on the self-system, that is, the affective, cognitive, and behavioral domains? Self-esteem is employed as the sole index of the affective domain. Our interest in the cognitive or motivational domain concerns self-efficacy (Bandura, 1982) or competence motivation (White, 1959). Efficacy expectations recently have proven to be a key mediator of important developmental outcomes among adolescents (see, e.g., Allen, Leadbeater, & Aber, in press); thus, we assess social as well as academic efficacy expectations. Social or interpersonal skills, as well as academic performance and preparation, are assessed as they are important ways in which the behavioral domain of the self-system is manifested (Freedman, Rosenthal, Donahoe, Schlundt, & McFall, 1978; Gaffney & McFall, 1981; Leadbeater, Hellner, Allen, & Aber, 1989).

The second question, less frequently addressed, is: What is the impact of this school transition on a youth’s perceived social context, that is, the school and peer microsystems? Social regularities are operationalized in terms of a youth’s self-reported daily hassles, social support and involvement with friends and school, and by peer values. The third question has been infrequently examined: Are changes in the self-system and perceived social context that coincide with the school transition common or unique to gender and racial/ethnic groups? In what ways do gender and race/ethnicity interact with the school transition? To our knowledge, the final question has never been addressed: To what extent are changes in the self-system a function of changes in the patterns of transactions with the peer and school microsystems across the transition from elementary to middle/junior high school?

Method

RECRUITMENT AND SAMPLING

The data for this study were drawn from the Adolescent Pathways Project (APP), a longitudinal study of youth attending schools in Baltimore, Washington, DC, and New York City with high concentrations of poor children (for additional details, see Seidman, 1991a). Sampling occurred in two steps: first, the selection of the schools, then the selection of the participants within schools.

School Selection

Elementary schools with predominantly black, Latino, or white students and with a minimum of 60%–80% of the student body eligible for reduced and/or free lunch were targeted. Within targeted schools, all students in the grade prior to the transition to a middle, intermediate, or junior high school...
were recruited, that is, fifth or sixth graders. The grade structure of the Baltimore schools was K–5/6–8, while in Washington it was K–6/7–9. To avoid confounding grade sequence with city, both grade sequences were sampled in New York City. Across cities, these youth came from 24 elementary schools in the pretransition year and had moved to 40 middle, intermediate, and junior high schools in the transition year.

Youth Sample
Recruitment.—In the pretransition year, we met with teachers, principals, parent teacher organization leaders, and others in an effort to achieve maximum participation. Study participants were recruited in each classroom of the highest grade of each targeted elementary school. All students in attendance were introduced to the study by the teacher and/or a staff member. Students were given a description of the study and a consent form, and asked to have a parent (or guardian) read the description, sign the consent form, and return it to the school. (The study description and active consent forms were in both English and Spanish.) A reminder notice and an extra consent form were sent home after a week or so. Pizza parties, or other rewards suggested by principals and/or teachers in each school, were used as incentives and were awarded to the classrooms that returned the largest percentage of parental consent forms in a targeted school, whether consent was given or not. Finally, for students with signed parental consent forms, the study was again described to the youth, and they were asked to sign their own youth informed consent before participating in wave 1. In wave 2, we recruited only the youth for whom we had signed consent forms in wave 1 from both the parent and student.

Participation and representativeness.—In wave 1, we gathered data from 863 early adolescents. The percentage of eligible parents and students agreeing to participate, who actually did participate, averaged 38% across classrooms. For the New York City subsample, the majority of our respondents, we compared standardized achievement scores in reading and mathematics for participating youth to those of all youth in the same grade and school. Participants did not differ significantly from nonparticipants on these standardized tests in their placement in the bottom versus the top half of the grade-school population (Seidman, 1991a).

Sample description.—Youth ranged in age from 9 to 15 (M = 11.4, SD = .93) at the time of assessment; 54% were female, 30% black, 19% white, 41% Latino, and 10% other (consisting primarily of Asians and biracial youth). The black youth were both African and Caribbean American, the whites were primarily Greek and Italian American, and the Latinos were predominantly Puerto Rican and Dominican. Three-quarters (76%) of the sample was from New York City, 20% from Washington, DC, and 4% from Baltimore. In general, the racial/ethnic ratios of participants within cities reflected those within the public school systems. The Washington sample was primarily black, with a small percentage of Latinos and no whites. The Baltimore sample had a mix of black and white students, and the New York sample contained Latinos as well as blacks and whites. Finally, 39% of these youth lived in census tracts where between 20% and 40% of the nonelderly residents fell below the official poverty line, and an additional 20% lived in tracts where 40% or more were below the poverty line (known as “concentrated” poverty areas).

Retention/attrition.—Wave 1 data (pretransition year) were collected between March and early June of 1988 or 1989. Between 10 and 12 months later, after the transition to a new school (January–May of 1989 or 1990), a second wave of data was gathered (transition year). Transition year data were collected for 74% of wave 1 youth. The sample for the current study only included black, white, and Latino youth on whom we had successfully collected both pre- and transition year waves of data (N = 580; black n = 161; white n = 146; Latino n = 273; female n = 318; male n = 262).

Analyses were conducted to examine differences between youth retained for both waves of data collection and those surveyed only in wave 1 with regard to all the dependent and demographic variables employed in this study. No multivariate differences in attrition were revealed on any of the dependent variables as a result of separate multivariate analyses of covariance (MANCOVA), one each for the self-system, school microsystem, and peer microsystem, with age, gender, and race/ethnicity as covariates. A parallel MANCOVA conducted on standardized mathematics and reading achievement scores also did not reveal a significant multivariate effect for retention. Furthermore, there were no univariate differences in retention for age or gender. The only difference in retention was for race/ethnicity, F(2,
Seidman et al. 511

779) = 19.98, p < .001. Scheffé tests (p < .05) revealed that whites were retained to a significantly greater degree than Latinos and blacks, and Latinos to a significantly greater degree than blacks. More important, in practical terms, the proportion of black youth at wave 2 (28%) was nearly equivalent to that at wave 1 (30%), and despite the retention of more white youth in wave 2, the white subsample continued to contain the smallest number of youth.

DATA COLLECTION PROCEDURES AND MEASURES

Data were collected in group settings at schools by APP staff of different racial and ethnic backgrounds. Instructions and questions were read aloud to the group, while staff members circulated to answer students’ questions and “spot-check” measures where directions were more complicated.

For existing instruments, instruments that we refined, and measures that we developed, we first conducted small focus groups of poor urban multicultural youth to ascertain whether the measures were comprehensible, linguistically appropriate, and meaningful. Next, we made the necessary modifications to achieve these objectives. Third, we pilot tested these measures on similar groups of youth to establish and refine their psychometric properties, while keeping them as brief as possible.

Self-System

Affective domain.—The affective domain of the self-system, and specifically self-esteem, was assessed with the five-item global self-worth subscale of the Self-Perception Profile for Adolescents (Harter, 1987). Using a “structured alternative format,” youth were asked to “pick the item that best describes you” from two opposite alternatives (e.g., “Some teenagers are very happy being the way they are” vs. “Some teenagers wish they were different”) and then indicate if the selected item was “sort of true” or “really true” of them. Items were scored on a four-point scale. The standardized item alpha (α) was .71 (.73). (Wave 2 alpha coefficients follow wave 1 coefficients in parentheses.)

Cognitive domain.—The cognitive or motivational domain was assessed with 10 situations, created specifically for this project and intended to tap academic and social efficacy expectations.1 Youth were asked to rate “How easy or hard would it be to deal with” each situation on a four-point scale ranging from “really easy” to “really hard.” For example, “You don’t understand what your teacher is talking about in class. Figuring it out on your own is . . .” or “A group of people wants to play a tape that you don’t like. Asking them to play a tape you like is” The first item illustrates an academic subscale item and the second a social subscale item. On the basis of a principal components analysis with VARIMAX rotation, academic and social subscales were suggested. They consisted of four, α = .60 (.58), and six, α = .71 (.71), items, respectively.

Behavioral domain.—The behavioral domain was tapped by measures of interpersonal competence or skills, class preparation, and self-reported GPA. Interpersonal competence was assessed with adaptations of the Adolescent Problem Inventory (API; Freedman et al., 1978) and the Problem Inventory for Adolescent Girls (PIAG; Gaffney & McFall, 1981). Participants were presented with conflictual interpersonal situations and asked to choose their preferred response from five alternatives, validated to represent different levels of interpersonal competence. The adjusted mean α across forms, calculated with the Spearman-Brown formula to correct for the differential length of forms, was .51. McFall and his associates created the API/PIAG as an inventory rather than an internally consistent set of items; as such, the α was deemed appropriate (see Allen, Leadbeater, & Aber, 1990).

Class preparation averaged the scores on four four-point (“almost never” to “almost every day”) self-report items. For example, “In general, do you: come to class prepared, or turn in neat, tidy homework?” α = .73 (.79).

Grade-point average (GPA) was self-reported: F or unsatisfactory (1), D or needs improvement (2), C or satisfactory (3), B or good (4), and A or excellent (5). School records of GPA were not available; however, self-reported GPA correlated .29 (p < .0001) and .25 (p < .0001) with standardized mathematics and reading achievement, respectively.

Perceived Microsystem Transactions

Within the school and peer contexts we assessed daily hassles, social support, and

1 These and all other instruments developed or refined by the APP are available upon request.
involvement/participation. The perceived values of one’s peers were also assessed.

The Daily Hassles scale was developed specifically for administration to inner-city adolescents (Seidman et al., 1993), based on the earlier work of Rowlinson and Felner (1988) and Kanner, Coyne, Schaefer, and Lazarus (1981). Several subscales were suggested by principal axis factor analysis with VARIMAX rotation. The peer and school subscales each consisted of four fairly typical daily events. For each, the youth checked whether the event “hasn’t happened this month,” and if it has, to rate how much of a hassle it was, on a four-point scale ranging from “not at all a hassle” to “a very big hassle.” For example, “friends bugging you to party” or “pressure to do well in school,” peer hassles \(\alpha = .70 (.64) \), school hassles \(\alpha = .70 (.78) \).

Social support was a modification of the Social Support Rating Scale developed by Cauce, Felner, and Primavera (1982). Peer and school subscales were each composed of six items; these items assessed emotional support, instrumental support, and satisfaction with the relationship for two people in each microsystem, for example, best friend for the peer subscale and teacher for the school subscale, peer support \(\alpha = .79 (.81) \), school support \(\alpha = .70 (.74) \).

The Involvement/participation scale was also developed specifically for this study of inner-city adolescents (Seidman et al., 1993). Youth were asked how often they do several activities “with your friends outside of school” (e.g., going to social events) and “at your school” (e.g., student government). Each item was rated on a six-point scale ranging from “never or almost never” to “almost every day.” A principal axis factor analysis with VARIMAX rotation yielded a three-item peer involvement, \(\alpha = .56 (.61) \), and an eight-item school involvement subscale, \(\alpha = .61 (.69) \).

The Peer Values scale included seven items from the Adolescent Values Inventory (Allen, Weissberg, & Hawkins, 1989). Using Harter’s format, youths chose between two alternatives, one traditional and the other antisocial, and then indicated whether the item was “sort of true” or “really true” of their peers’ values—for example, “My friends like someone who always obeys parents’ rules” versus “My friends like someone who never obeys parents’ rules.” High scores represent conformity to traditional values and low scores to antisocial values, \(\alpha = .65 (.66) \).

Table 1 presents a matrix of correlations for all the self-system and perceived microsystem transaction variables at time 1 and 2.

Results

The findings are presented in three sections: (1) impact of school transitions on the self-system; (2) impact of school transitions on perceived peer and school microsystem transactions; and (3) changes in the self-system as a function of transition-associated changes in perceived peer and school microsystems. Our initial set of questions regarding whether gender and/or race/ethnicity interact with time are explored in the first two sections.

In the first two sections, repeated-measures multivariate analyses of covariance (MANCOVA) were used to evaluate the impact of the school transition on the cognitive and behavioral domains of the self-system and the perceived school and peer social contexts, each of which consists of multiple, conceptually related dimensions. However, for the affective domain of the self-system, there was only one dimension, self-esteem, so an analysis of covariance (ANCOVA) was used. In each analysis, a gender (female, male) \(\times \) race/ethnicity (black, white, Latino) \(\times \) time (pretransition, transition year) design was used. Age and grade of transition (fifth-sixth vs. sixth-seventh grade) were employed as covariates in order to assess the impact of the school transition independently of age and grade at time of transition. In all analyses, we were interested in the within-subjects main effect for time and in its interaction with gender and race/ethnicity, and not between-subjects main or interaction effects. When a statistically significant multivariate effect for time, or an interaction of time with gender, race/ethnicity, or both occurred, the univariate analyses were examined.

To maximize the available data, individual gender \(\times \) race/ethnicity \(\times \) time ANCOVAs controlling for age and grade of transition were conducted separately for each dimension involved in each of the following MANCOVAs. The results of these ANCOVAs were consistent with the multivariate and univariate time effects described.
Table 1

Correlation Matrix of Self-System and Perceived Microsystem Variables

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Self-esteem</td>
<td></td>
<td>23*</td>
<td>14*</td>
<td>08</td>
<td>13*</td>
<td>16*</td>
<td>-25*</td>
<td>11</td>
<td>03</td>
<td>-17*</td>
<td>-08</td>
<td>08</td>
<td>18*</td>
</tr>
<tr>
<td>2. Academic efficacy expectations</td>
<td>21*</td>
<td></td>
<td>26*</td>
<td>-01</td>
<td>08</td>
<td>22*</td>
<td>-33*</td>
<td>02</td>
<td>10</td>
<td>-19*</td>
<td>04</td>
<td>10</td>
<td>-02</td>
</tr>
<tr>
<td>3. Social efficacy expectations</td>
<td>15*</td>
<td>32*</td>
<td></td>
<td>-12</td>
<td>-00</td>
<td>03</td>
<td>-11</td>
<td>-08</td>
<td>05</td>
<td>-14*</td>
<td>06</td>
<td>10</td>
<td>-09</td>
</tr>
<tr>
<td>4. Interpersonal competence</td>
<td>13*</td>
<td>-09</td>
<td>-14*</td>
<td></td>
<td>29*</td>
<td>12</td>
<td>-15*</td>
<td>09</td>
<td>01</td>
<td>-10</td>
<td>-28*</td>
<td>15*</td>
<td></td>
</tr>
<tr>
<td>5. Class preparation</td>
<td>16*</td>
<td>11*</td>
<td>-01</td>
<td>28*</td>
<td></td>
<td>36*</td>
<td>-24*</td>
<td>-01</td>
<td>12</td>
<td>-01</td>
<td>04</td>
<td>-10</td>
<td>13</td>
</tr>
<tr>
<td>6. GPA</td>
<td>10</td>
<td>14*</td>
<td>02</td>
<td>16*</td>
<td>47*</td>
<td></td>
<td>-30*</td>
<td>-04</td>
<td>21*</td>
<td>02</td>
<td>-01</td>
<td>08</td>
<td>-01</td>
</tr>
<tr>
<td>7. School hassles</td>
<td>-24*</td>
<td>-31*</td>
<td>-02</td>
<td>-12*</td>
<td>-26*</td>
<td>-27*</td>
<td></td>
<td>-03</td>
<td>-14*</td>
<td>35*</td>
<td>10</td>
<td>-03</td>
<td>01</td>
</tr>
<tr>
<td>8. School support</td>
<td>-03</td>
<td>04</td>
<td>-12*</td>
<td>12*</td>
<td>04</td>
<td>07</td>
<td>-10</td>
<td></td>
<td>20*</td>
<td>15*</td>
<td>21*</td>
<td>-03</td>
<td>09</td>
</tr>
<tr>
<td>9. School participation</td>
<td>09</td>
<td>15*</td>
<td>-02</td>
<td>00</td>
<td>15*</td>
<td>09</td>
<td>-09</td>
<td>13*</td>
<td></td>
<td>05</td>
<td>10</td>
<td>15*</td>
<td>03</td>
</tr>
<tr>
<td>10. Peer hassles</td>
<td>-27*</td>
<td>-19*</td>
<td>-14*</td>
<td>-05</td>
<td>-12*</td>
<td>-01</td>
<td>29*</td>
<td>08</td>
<td>08</td>
<td></td>
<td>09</td>
<td>-01</td>
<td>-01</td>
</tr>
<tr>
<td>11. Peer support</td>
<td>01</td>
<td>02</td>
<td>05</td>
<td>-03</td>
<td>-01</td>
<td>04</td>
<td>01</td>
<td>21*</td>
<td>14*</td>
<td>00</td>
<td></td>
<td>14*</td>
<td>-11</td>
</tr>
<tr>
<td>12. Peer participation</td>
<td>05</td>
<td>11</td>
<td>19*</td>
<td>-17*</td>
<td>-06</td>
<td>02</td>
<td>06</td>
<td>03</td>
<td>22*</td>
<td>05</td>
<td>22*</td>
<td></td>
<td>-07</td>
</tr>
<tr>
<td>13. Peer values</td>
<td>03</td>
<td>04</td>
<td>-11</td>
<td>12*</td>
<td>11*</td>
<td>-07</td>
<td>10</td>
<td>03</td>
<td>-13*</td>
<td>-01</td>
<td>-01</td>
<td>-09</td>
<td></td>
</tr>
</tbody>
</table>

Note. — Time 1 and 2 correlations are above and below the diagonal, respectively. Decimal points are omitted.

* p < .01.
Impact on Self-System

Table 2 presents the pre- and transition year means and standard deviations of the six self-system dimensions.

Affective domain.—The univariate time effect for self-esteem indicated that self-esteem declined across the school transition, $F(1, 491) = 25.82, p < .001, \eta^2 = .05$. There were no significant gender or race/ethnicity interaction effects with time.

Cognitive domain.—The multivariate time effect for efficacy expectations was significant, $F(2, 487) = 27.86, p < .001, ES = .10$ (ES represents the multivariate effect size). The univariate time effects revealed that both academic and social efficacy expectations increased across the school transition, $F(1, 487) = 28.19, p < .001, \eta^2 = .05$, and $F(1, 487) = 39.97, p < .001, \eta^2 = .08$, respectively. There were no significant multivariate within-subjects interaction effects.

Behavioral domain.—The multivariate time effect for the behavioral domain of the self-system was also significant, $F(3, 374) = 11.13, p < .001, ES = .08$. This multivariate effect was accounted for primarily by a decline in GPA, $F(1, 376) = 27.55, p < .001, \eta^2 = .07$, and in class preparation, $F(1, 376) = 12.26, p < .001, \eta^2 = .03$, during the school transition year. To control for achievement ability, a supplementary MANCOVA that included standardized reading and mathematics achievement in addition to age and grade of transition as covariates was computed.3 Identical multivariate and univariate effects and effect sizes were found. In neither case were there significant multivariate within-subjects interaction effects.

Summary.—The affective and behavioral domains of the self-system declined across the school transition. Specifically, self-esteem, class preparation, and reported GPA declined. On the other hand, academic and social efficacy, the cognitive domain variables, increased across the school transition. These changes appeared to be robust across gender and race/ethnicity.

Impact on School and Peer Microsystem Transitions

Table 3 presents the pre- and school transition year means and standard deviations of the three perceived school and four peer microsystem dimensions.

School microsystem.—The multivariate time effect for the school context was significant, $F(3, 354) = 14.97, p < .001, ES = .11$. All three perceived school context dimensions contributed to this multivariate effect. Daily hassles with the school microsystem increased, $F(1, 356) = 5.94, p < .05, \eta^2 = .02$, while social support declined significantly in the transition year, $F(1, 356) = 17.74, p < .001, \eta^2 = .05$. Participation in extracurricular school activities also declined across the transition, $F(1, 356) = 20.96, p < .001, \eta^2 = .06$. These changes in perceived daily hassles, support, and participation within the school microsystem did not manifest any significant interactions of time with gender or race/ethnicity.

Peer microsystem.—The multivariate time effect for the peer microsystem was also significant, $F(4, 401) = 16.39, p < .001, ES = .14$. This time effect was primarily a function of decreased daily hassles with peers, $F(1, 404) = 39.27, p < .001, \eta^2 = .09$, and reports that peer values had become more nonconforming toward the end of the transition year, $F(1, 404) = 20.17, p < .001, \eta^2 = .05$.

The multivariate gender × race/ethnicity × time effect was statistically significant, $F(8, 802) = 2.52, p < .01, ES = .02$. This three-way effect was accounted for primarily by peer social support, $F(2, 404) = 3.94, p < .05, \eta^2 = .02$, and involvement/participation, $F(2, 404) = 4.01, p < .05, \eta^2 = .02$. The effect size of the multivariate F and the percentages of variance accounted for by these two univariate effects were quite small. And the supplementary MANCOVA that included standardized reading and mathematics achievement scores as covariates, did not manifest a significant gender × race/ethnicity × time effect, though all other significant effects were identical. Thus, disentangling and interpreting these

3 These supplementary MANCOVAs, with standardized reading and mathematics achievement scores as additional covariates, were conducted for all self-system and social context analyses to control for changes in the dependent variables that may have been associated with achievement ability. Because of missing data and listwise deletion procedures, these supplementary analyses are based on smaller N's; thus, they are presented in the text only when they are either particularly pertinent, as in the present case, or when they suggested different or additional findings.
<table>
<thead>
<tr>
<th></th>
<th>AFFECT</th>
<th>Cognition</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self-Esteem***</td>
<td>Academic Efficacy Expectations***</td>
<td>Social Efficacy Expectations***</td>
</tr>
<tr>
<td>Pretransition year</td>
<td>3.07 (.75)</td>
<td>2.28 (.61)</td>
<td>3.07 (.60)</td>
</tr>
<tr>
<td>Transition year</td>
<td>2.86 (.77)</td>
<td>2.45 (.61)</td>
<td>3.25 (.57)</td>
</tr>
</tbody>
</table>

*** p < .001.
small interaction effects in the peer micro-system appears imprudent.

Summary.—Transactions with the school microsystem deteriorated after transition to a new school: youth reported increased daily hassles and decreased social support and involvement with school. On the other hand, daily hassles with peers decreased, and peer values became more nonconforming.

Predicting Self-System Change

For each of the six self-system constructs, a hierarchical multiple regression analysis was performed in order to assess the association of changes across time in the school and peer microsystem dimensions with the time 2 dependent variable, after controlling for the time 1 dependent variable and demographic variables. In each case, the dependent variable was the time 2 score on the particular self-system measure. In the first step, the time 1 self-system score was entered. In the second step, a set of demographic control variables was entered: two ethnic contrasts (white vs. black and Latino; Latino vs. black), gender, age, and grade of transition (fifth-sixth vs. sixth-seventh grade). In the third and final step, five microsystem change scores were entered in order to examine which contextual changes associated with the transition might explain changes in the self-system. Microsystem change scores (time 2 minus time 1) were constructed for the three school and two peer social context dimensions that, in the preceding analyses, yielded significant multivariate and univariate time effects across the school transition—daily hassles, social support, and participation in school; daily hassles with peers and perceived peer values.

As a set, changes in the perceived school and peer microsystems were associated exclusively with changes in the academic aspects of the cognitive and behavioral domains of the self-system (academic efficacy expectations, \(R^2 = .05, F = 6.32, p < .001 \), class preparation, \(R^2 = .02, F = 2.32, p < .05 \), and GPA, \(R^2 = .03, F = 2.86, p < .05 \), respectively). On the other hand, these perceived microsystem changes did not affect the affective or social dimensions of the cognitive and behavioral domains (self-esteem, \(F = 1.16, \text{N.S.} \), social efficacy expectations, \(F = 1.29, \text{N.S.} \), and interpersonal competence, \(F = 1.50, \text{N.S.} \), respectively).

As can be seen in Table 4, academic specificity is apparent in the consistent asso-

4 Specific gender, race/ethnicity, grade, and time cell means were calculated and substituted where there was missing data before computing the perceived social context change variables. This permits greater generalizability of the findings because it addressed the possibility of non-randomly distributed missing data. A parallel set of regression analyses conducted without mean substitution led to nearly identical findings.

5 The results of a parallel set of regression equations utilizing all seven perceived microsystem change scores, in contrast to the five manifesting significant change across the school transition, neither added nor altered the pattern of significant beta coefficients in the final equations.
<table>
<thead>
<tr>
<th></th>
<th>Academic Efficacy Expectations</th>
<th></th>
<th>Class Preparation</th>
<th></th>
<th>Grade-Point Average</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b (SE)</td>
<td>β</td>
<td>F</td>
<td>b (SE)</td>
<td>β</td>
<td>F</td>
</tr>
<tr>
<td>1. Time 1 dependent variable</td>
<td>.40 (.04)</td>
<td>.41</td>
<td>92.26***</td>
<td>.45 (.05)</td>
<td>.40</td>
<td>85.66***</td>
</tr>
<tr>
<td>2. Demographics:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>.05 (.04)</td>
<td>.07</td>
<td>1.90</td>
<td>-.06 (.04)</td>
<td>-.07</td>
<td>1.91</td>
</tr>
<tr>
<td>Female vs. male</td>
<td>.14 (.05)</td>
<td>.11</td>
<td>7.88**</td>
<td>.02 (.06)</td>
<td>.01</td>
<td>.10</td>
</tr>
<tr>
<td>Fifth- vs. sixth-grade transition</td>
<td>-.10 (.07)</td>
<td>-.08</td>
<td>2.08</td>
<td>-.12 (.08)</td>
<td>-.08</td>
<td>2.07</td>
</tr>
<tr>
<td>White vs. black, Latino</td>
<td>-.01 (.02)</td>
<td>-.03</td>
<td>.56</td>
<td>-.02 (.02)</td>
<td>-.04</td>
<td>.80</td>
</tr>
<tr>
<td>Latino vs. black</td>
<td>.05 (.04)</td>
<td>.07</td>
<td>1.90</td>
<td>.03 (.04)</td>
<td>.03</td>
<td>.53</td>
</tr>
<tr>
<td>3. Δ Social context dimensions:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ School daily hassles</td>
<td>-.13 (.03)</td>
<td>-.20</td>
<td>21.22***</td>
<td>-.09 (.03)</td>
<td>-.11</td>
<td>6.34*</td>
</tr>
<tr>
<td>Δ School social support</td>
<td>.03 (.05)</td>
<td>.03</td>
<td>.49</td>
<td>-.03 (.06)</td>
<td>-.02</td>
<td>.22</td>
</tr>
<tr>
<td>Δ School participation</td>
<td>.04 (.02)</td>
<td>.07</td>
<td>3.33*</td>
<td>.02 (.03)</td>
<td>.04</td>
<td>.73</td>
</tr>
<tr>
<td>Δ Peer daily hassles</td>
<td>.00 (.03)</td>
<td>.01</td>
<td>.02</td>
<td>.03 (.04)</td>
<td>.03</td>
<td>.45</td>
</tr>
<tr>
<td>Δ Peer values</td>
<td>.06 (.03)</td>
<td>.07</td>
<td>3.19*</td>
<td>.08 (.04)</td>
<td>.09</td>
<td>4.08*</td>
</tr>
</tbody>
</table>

*p < .10.
* *p < .05.
**p < .01.
***p < .001.
iation of increases in school daily hassles across the transition with decreases in academic efficacy expectations ($\beta = -0.20$), class preparation ($\beta = -0.11$), and GPA ($\beta = -0.15$). In each instance, change in school daily hassles yielded the largest beta coefficient. The perception of increasingly conforming peer values was associated with increased class preparation ($\beta = 0.09$) and increased peer hassles with reports of increased GPA ($\beta = 0.10$).

Discussion

SELF-SYSTEM AND SOCIAL CONTEXT EFFECTS OF THE SCHOOL TRANSITION

The results of this study provide a clear and compelling portrait of the impact of the transition from elementary to middle/junior high school in large, resource-poor urban schools. Several scholars have described the school transition during early adolescence as one that precipitates increasing disengagement from school (Eccles & Midgley, 1989; Simmons & Blyth, 1987). This study supports and extends these findings. Movement from elementary to middle/junior high school was associated not only with a decline in extracurricular participation but also with a decline in the perception of support from school personnel and an increase in the daily hassles experienced in school. The "flip side" of these altered transactions with the school microsystem is increased engagement with the peer microsystem—specifically, decreased hassles with peers whose values adolescents saw as becoming increasingly antisocial. These results were durable at the end of the transition year. Collectively, these microsystem changes are likely to place youth at increased risk for maladaptive outcomes.

By design, our sample of schools and youth was economically poorer and ethnically more diverse than those of prior investigations. Several scholars have described the school transition during early adolescence as one that precipitates increasing disengagement from school (Eccles & Midgley, 1989; Simmons & Blyth, 1987). This study supports and extends these findings. Movement from elementary to middle/junior high school was associated not only with a decline in extracurricular participation but also with a decline in the perception of support from school personnel and an increase in the daily hassles experienced in school. The "flip side" of these altered transactions with the school microsystem is increased engagement with the peer microsystem—specifically, decreased hassles with peers whose values adolescents saw as becoming increasingly antisocial. These results were durable at the end of the transition year. Collectively, these microsystem changes are likely to place youth at increased risk for maladaptive outcomes.

One surprising finding was located in the cognitive or motivational domain: increased academic and social efficacy expectations after the transition. This result seems inconsistent with the work of Eccles and her colleagues, who report motivational declines after the school transition. The operationalization of constructs in the two projects is quite different. Eccles et al. (1993) employed behavioral measures and indices of interest in school, opportunities for decision making, and attitudinal measures, including intrinsic interest in mathematics. Our behavioral index of interest in school, participation in extracurricular activities, also declined; however, our motivational measures tapped youths' general beliefs that they could master difficult academic and social encounters in the future.

The meaning of this increment is not clear. Is it a function of age-related changes in intellectual development, for example, the acquisition of more abstract reasoning? Or does the reported increase in motivation represent an unrealistic bravado, an optimistic component of the self-system that, in the long run, serves as a vital protective mechanism against concurrent decrements in performance and self-esteem? Academic efficacy expectations, despite an increment across the transition, were still adversely affected by increased school hassles. These alternative explanations are difficult to tease apart without additional longitudinal and normative data.

With one exception, we did not discover time × gender or race/ethnicity interactions on the self-system or perceived social context, despite the fact that several prior investigations have reported such interactions on selected self-system dimensions (e.g., self-esteem, Simmons, Burgeson, Carlton-Ford, & Blyth, 1987). One explanation of our failure to detect unique gender or race/ethnicity responses to the transition may be that our sample, as compared to others, was far more homogeneous in socioeconomic status. Moreover, potential interaction effects of time × gender and/or race/ethnicity may have been overwhelmed by a move into more stressful circumstances.

Examining the interaction between standardized reading and mathematics achievement scores were inserted before social context changes as control variables. The same findings were replicated and the social context change step accounted for an even greater percentage of variance than in the uncontrolled equation, $R^2 = .04; F = 3.54, p < .01$. The effect for school hassles was also larger, original $b = -0.15 (.05)$, $p < .01$, supplementary $b = -0.19 (.05), p < .001$.

6 In a supplementary analysis controlling for academic ability in the prediction of GPA, standardized reading and mathematics achievement scores were inserted before social context changes as control variables. The same findings were replicated and the social context change step accounted for an even greater percentage of variance than in the uncontrolled equation, $R^2 = .04; F = 3.54, p < .01$. The effect for school hassles was also larger, original $b = -0.15 (.05)$, $p < .01$, supplementary $b = -0.19 (.05), p < .001$.

This content downloaded on Tue, 18 Dec 2012 09:58:56 AM
All use subject to JSTOR Terms and Conditions
time and race in the Milwaukee study, Simmons et al. (1991) found that the GPAs of African American youth plummeted much more than those of white youth. We also examined this interaction effect within the behavioral domain but did not find a significant multivariate effect. In an effort to replicate Simmons et al.’s findings, we examined the univariate time × race/ethnicity interaction effect for GPA and discovered a trend \(p < .10 \). However, it appeared that the GPAs of black and white youth declined equally, and both groups decreased more than Latino youth. We should point out that beyond the variation in race/ethnicity and midwestern versus eastern location, 15 years elapsed between the time the Milwaukee and APP youth actually experienced the school transition.

Are the effects on the self-system, perceived school and peer social contexts common for gender and race/ethnicity groups across the school transition? Methodologically, it is difficult to detect two- and three-way interaction effects with multivariate analyses, since most of the dependent variables (univariate components) must function in a similar way. Thus, such interaction effects may have been overshadowed. For example, univariate analyses revealed a significant race/ethnicity × time interaction effect for daily hassles with school and a significant gender × time interaction effect for interpersonal skills, though the multivariate analysis was not significant. We found a significant multivariate time × gender × race/ethnicity interaction effect for the peer context but chose, conservatively, not to interpret the univariate interaction effects. To understand unique gender or race/ethnicity patterns requires more attention to within-group analyses; otherwise, these patterns of meaning may continue to be obscured (McLoyd & Randolph, 1985; Seidman, 1991a; Vega, 1992).

Are there viable alternative explanations for these broad-band effects on multiple dimensions of the self-system and the perceived school and peer microsystems, as well as for the consistency of effects for gender and race/ethnicity? We address three alternative between-subjects explanations and one within-subjects explanation.

Age and grade of transition are often postulated as plausible between-subjects alternative explanations for school transition effects. (Of course, these two variables are hopelessly confounded.) The literature has amply documented the fact that transition effects occur above and beyond age and grade effects (Eccles & Midgley, 1989). A third between-subjects explanation postulates that children who are academically least capable experience the greatest declines upon entry to a new, more complex and academically difficult school. In the initial MANCOVAs we statistically controlled for age and grade of transition, and in the supplementary analyses, we also included standardized reading and mathematics achievement as covariates. In all cases, we found the same results with or without these controls; thus, school transition effects are independent of age, grade of transition, and ability levels.

A developmental, within-subjects explanation remains possible. All children, regardless of their age or grade in the pretransition year, grew almost 1 year older by the time of the second assessment. The finding that only youth who made a school transition during early adolescence manifested declines casts doubt on the tenability of the developmental hypothesis (Simmons & Blyth, 1987). Nevertheless, the most compelling test of the developmental explanation in our study can only be examined with a minimum of three waves of data. With the future addition of a posttransition year data point for both those who made the transition between grades 5 and 6 and 6 and 7, we will be able to weigh the evidence for the developmental versus transition hypotheses.

The developmental mismatch hypothesis continues to be the most compelling explanation for the effects of the transition to middle/junior high school found here and in previous studies (Eccles & Midgley, 1989, 1990). Developmentally, early adolescence is an inopportune time to leave the familiarity of one’s school peers for a new group of peers, many of whom are older and who are perceived as having more antisocial values. It is equally inopportune to leave the confines of a single, supportive teacher who knows each child’s academic and social strengths for an environment characterized by brief contact with numerous teachers. In this structural arrangement, it is difficult for youth to experience being valued and special, particularly in overcrowded, resource-poor urban public schools. This mismatch is particularly troubling because it comes at a time when youth are trying to develop an identity beyond their family and being pulled in other directions by peers. Schools provide a major source of unrelated adults who can serve as “listeners” and “valuers”
at this critical developmental juncture. The transition into a large, anonymous, and bureaucratic setting makes the establishment of supportive relationships increasingly unlikely.

Future research will need to address the question of whether school transitions initiate a negative trajectory for youth who experience the greatest insults to their self-system and disruptions to their school and peer microsystems. Upon what pathways are they launched? Does the transition to high school represent double jeopardy? Will such students become delinquents, academic failures, and/or dropouts, or will they begin to experience depression? Do these pathways vary by gender or race/ethnicity? Further investigation of the mediating role of pedagogy, structure, and organization of schools in moderating the negative effects of urban school transitions is critical to answering such questions (Eccles, Lord, & Midgley, 1991).

ACADEMIC SPECIFICITY OF TRANSITION-ASSOCIATED CONTEXT CHANGES

In examining transition-linked perceived social context changes, we found that the more intensely youth experienced daily hassles with the transition to a new school, the lower their expectations of academic efficacy, the less they prepared for class, and the poorer their grades. Class preparation also declined as antisocial peer values increased, and GPA declined for youth who reported a decrease in peer hassles. One interpretation of this latter finding is that youth who are doing well in school are less hassled by school, but at the same time pressured by peers to be less conforming academically.

In retrospect, the academic specificity of these effects is not surprising in light of intensive analyses of student and teacher academic beliefs and classroom practices before and after the early adolescent school transition (Eccles et al., 1993). On the other hand, these results suggest that the social/interpersonal dimensions may be less vulnerable than academic aspects of the self-system to the strains associated with school transitions.

A fuller and more in-depth assessment of context is necessary to garner information on risk and protective factors. For example, taking into account more proximal risks, such as household income or parental loss of a job, may increase our understanding of the effects on the self-system. Family arrangements and neighborhood characteristics are important contexts to consider as well.

CAVEATS AND IMPLICATIONS

Multiple sources of measurement such as parent and teacher ratings and school record data would provide a broader perspective than the current study. More important, contextual and mediational processes need to be examined through additional methods of observation and over time. Nevertheless, this investigation extended the literature on school transitions in several ways: (1) to a population of racially and culturally diverse youth in resource-poor, inner-city schools; (2) to a broader conceptualization and assessment of the associated changes in the perceived school and peer microsystems; and (3) to an understanding of how the self-system is affected by transition-associated changes in the social context.

Finally, the results of this study suggest the need to minimize the disruption in early adolescents' social regularities surrounding the school transition (Linney & Seidman, 1989). For the most part, innovations aimed at restructuring schools have been undertaken at the high school level (Felner & Adan, 1988; Oxley, in press), but our results for the schooling of early adolescents are congruent with the recommendations in “Turning Points” (Carnegie Council on Adolescent Development, 1989, p. 9): “Create small communities for learning where stable, close, mutually respectful relationships with adults and peers are considered fundamental for intellectual development and personal growth. The key elements of these communities are schools-within-schools or houses, students and teachers grouped together as teams, and small group advisories that ensure that every student is known well by at least one adult.”

References

